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MODELLING OF OIL SHALE RETORTS
FOR ELECTROMAGNETIC SENSING TECHNIQUES

H. Chew*

We report here some work on the modelling of oil shale re-

torts for electromagnetic sensing techniques. The aim is to

obtain useful information about the contents of the retort (e.g.,

rubble size, void ratio, etc.) by means of electromagnetic
probes. In this work, the retort is modelled by a spheroid with
an average dielectric constant which depends on the void ratio.

The near field due to a radiating dipole source in the vicinity of

a spheroidal retort is computed using the Extended Boundary
Condition Method due to Waterman, Barber, and Yeh. Numerical
results are given at 4 MHz for a retort with major axis 45.7 m

(150 ft), minor axis 25.1 m (82.5 ft), bulk dielectric constant
8.8 + 3 . 7 j , and various void ratios. The results indicate
feasibility of determining the void ratio by remote
electromagnetic measurements. It is also believed that this work
may be of interest beyond the immediate context of oil shale
retort model ling.

Key words: oil shale retorts; remote sensing; scattering.

I. INTRODUCTION

In situ processing of oil shale offers many environmental advantages.

For example, the waste products largely remain underground and are not

released into the immediate environment. There are also many technical

problems connected with in situ processing, one of them being the gathering of

information about the contents and the state of the oil shale retorts. A

promising method for obtaining such information is electromagnetic remote

sensing. In this approach, transmitters and receivers are introduced to the

vicinity of the retort via boreholes (figure 1), and one attempts to extract

information about the contents of the retort by analyzing the received

signals. For this purpose, it is necessary to have a specific model which

relates the relevant physical quantities and allows the interpretation of the

signals.

The precise modelling of a retort of irregular shape containing rubble of

irregular size and shape is a difficult task both in principle and

numerically. To obtain tractable results, many simplifying assumptions are

unavoidable. In this work, we model the retort by a spheroid embedded in an

infinite medium of different electromagnetic properties (there is no

* On sabbatical leave
( 1980-1981) from Department of Physics, Clarkson College,

Potsdam, NY 13676.



Figure 1. Schematic drawing of an oil shale retort.
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difficulty in treating media of different magnetic permeabilities, although in

the numerical work to be presented here both media are assumed to be non-

magnetic), and compute the near field due to a radiating dipole source in the

vicinity of the retort using the Extended Boundary Condition Method (EBCM) of

Waterman [1], Barber and Yeh [2]. The effects of the boreholes are neglected,

and both the spheroid and the outside medium are assumed to be homogeneous and

isotropic. In practice, the shale rocks generally have some layered

structure, but the effects of anisotropy are probably not large, as laboratory

measurements at the National Bureau of Standards [3] show that the value of

the dielectric constant of shale rocks is essentially independent of

orientation. With these assumptions, the EBCM formalism is exact in the sense

that the resulting series is a solution to Maxwell's equations satisfying the

appropriate boundary conditions and therefore contains all the electromagnetic

effects (surface waves, body waves, etc.). Moreoever, the spheroid, with its

two geometric parameters (the major and minor axes) is sufficiently flexible

to simulate a variety of shapes and yet is such that the mathematical analysis

involved is manageable, if complicated. A drawback of this approach is the

complexity of the calculations, which are time consuming even when done on a

fast electronic computer. The near field calculated, which includes both the

incident dipole field and the scattered field in the near zone, is a function

of the characteristics of the retort and of the surrounding medium. The

mixture of rubble and void inside the retort is described here by an average

dielectric constant which depends, among other things, on the void ratio

(defined as the ratio of the void volume to the total retort volume) in a way

to be discussed later. Thus, the dependence of the field on the average

dielectric constant may be used to extract information about the contents of

the retort. In this work, we are able to treat only the question of void

ratio and not that of rubble size. To gain some idea of this dependence

without elaborate formulas, we carried out a preliminary calculation (Appendix

1) for a spherical retort in the Rayleigh limit, and found that the scattered

field is a sensitive function of the average dielectric constant inside, being

roughly proportional to the difference between the dielectric constants inside

and outside. This strong dependence appears to persist in the much more

involved spheroidal calculations as well.

The relation between the average dielectric constant and the void content

is a difficult subject, and a large number of workers [4,5,6] have examined

3



the problem of the effective dielectric constant of two-component systems.

For example, Sillars [7] obtained an expression for the dielectric constant of

a two-component system in terms of those of the constituents and the volume

ratios for the case when one component consists of spheroids of uniform size

embedded in the other medium. His result also depends on the ratio of the

spheroidal axes. Because the rubble is very unlikely to be spheroids of

uniform size, it is uncertain whether his result would be applicable to our

case, inasumch as it introduces an additional parameter (the ratio of the

axes). More complicated and frequency-dependent results are also available

[5]

, again under assumptions of doubtful applicability to oil shale retorts.

In this work, we shall use a simple empirical relation due to Lichtenecker

[6]

, wherein the logarithm of the dielectric constant is averaged in

proportion to the volume. If two media of dielectric constants e
1
and e 2 and

volumes and V 2 , respectively, form a composite medium whose average

dielectric constant is e (throughout this paper, dielectric constants refer to

dielectric constants relative to that of vacuum, except in eq (3)), then it

has been found empirically that in a large number of cases [6,8], e is given

to a good approximation by

Vi v
2

In e=-yln e
1

+ —yin e 2 , (1)

where V = V x + V 2 is the total volume. In the case of an oil shale retort,

which consists of air (dielectric constant e
L

= 1) and rubble (dielectric

constant e 2
= bulk value for shale rocks), the void ratio is V x /V and we may

rewrite (1) as

V - Vx
In e = — In e 2 = (1 - V

x
/V) In e 2 . (la)

This relation, which will be referred to as Lichtenecker 's formula, will

be used to relate the void ratio V
x
/V to the average dielectric constant of

the interior of the retort (rubble plus void), with the bulk dielectric

constant e 2
of the exterior medium being assumed known. In the case of

absorbing media, eq (la) is assumed to hold for both the real and imaginary

parts of the dielectric constant. This relation neglects the dependence of

the average dielectric constant on the size and shape of the rubble. This

neglect may not be very serious [6], as there is some evidence from the recent

work of Warne and Uhl [5], who concluded from some one-dimensional computer

simulation calculations that scattering effects depend largely on void

dimensions rather than rock sizes.
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II. FORMULATION OF THE PROBLEM

In applying the Extended Boundary Condition Method [1,2], the scatterer

is replaced by a set of equivalent surface currents. The incident and

scattered fields are both expanded in series of vector spherical harmonics.

After a lengthy analysis [1,2], a transition matrix (T-matrix) is computed

which converts the known coefficients of the incident field into the

scattering coefficients. The elements of the T-matrix are surface integrals

of certain combinations of Bessel and Legendre functions which are computed

numerically. For the convenience of the reader, we summarize the key steps

invol ved.

Let the spheroid be centered at the origin with its axis of symmetry (z-

axis) vertical (figure 2), and the oscillating dipole source with dipole

moment £ be located at coordinate r,. If the observer is at the
d

coordinate r = r, then for r>r
c)

the incident dipole field may be expanded in

a series of vector spherical harmonics (if r<r
cj

one needs only to interchange

the superscripts 1 and 3 in eqs (2) and (3)),

where k 2

t.(r) = l D [a fi3(k,?) + b fi3(k,r)L
1 y

V V V 2 V V 2

= wave number in medium 2

(
2

)

= e.
(2p+1

|

I (n-mjl!

4n (n+1
)1
(n+m

)

I!

= rl (m=0)

i ^2 (m>0)

i - i

00

l

m=n

i
V e,o n=l m=0

a
v

jk
2
3

TT£
2

P •

J k
2
3

M 1 (k r
) , b = p • ft

1
(
k
2
f',).

v 2 d v tt£
2

v 2 d
(3)

The label v stands for three indices: m=0,l, • • «n; n=l,2,3««»; a=odd, even.

Explicitly, we have

vx
cos md> ^m

[r . P
sin m<}> n

(cose) j
n

(k
2
r)]>

replaced by h
(
1

)

n
(
k
2
r).

r
amn

(
k
2
P

)
= TT VX M

^nnz k
^

omn
a = 1,3.

(4a)

(4b)

(4c)
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Figure 2. A spheroidal retort. The major axis of the prolate spheroid is

along the vertical z-axis. The transmitter lies in the x-z

plane with spherical coordinates (r^, e^, 0) and the receiver
cordinates are (r

Q , e , <j> ). The complex dielectric constants
inside and outside are denoted by e and e 2 , respectively.
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For a scatterer of finite conductivity, the EBCM requires as an

intermediate step also the field inside the scatterer. Let this field be

£(r), with the expansions (k = wave number inside the scatterer),

t(r) - l [c
y

(kf) + d
v

Ri (kr)], (5)

V

and

£
se

(f) = l [p^ (k
2?)

+ q
v
^ 3 (k

2
r)].

V V

(
6

)

Then the internal field coefficients c
y

and d
y

may be found from the

linear equations

V { [K + J— J 3 c + [L + J—— I J dv }
- - j a

J
MV M

r
yV

J
V

L yV y
p

yV J J
y

(7a)

y { [I + /— L ] c + [J +/— K ] d }
= - j b , (7b)

J
yv y

p
yv v yv y

p
yv

J
v

J

y
v '

where e
p

= e/e 2 , y
p

= y/u 2 > anc*

k 2k
2

I = — / n . [M3 (k r') x Mi (kr')] dS,
yV tt y

z V
(8a)

k
2
2

-

j = — / n • [M3 (k r
' )

x fo (kr
1

)] dS,
yv tt y

z V
(8b)

k 2
z

K = — / n - [N3 (k r
' ) x Mi (kr

1

)] dS,
y V tt

(8c)

k 2K
2

L = — / n . [N3 (k r') x Ni (kr
1

)] dS.
y V tt

( 8d

)

The integrations are over the surface S of the spheroid (area element dS and

unit outward normal n ). After the internal field coefficients c^ and d^ are

determined in terms of the known incident coefficients a^ and b^, the required

scattering coefficients
p^

and
q^

are given by
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P
= - j D

m y
y {[k* +

v

J
' ] c + [L

1

+ / — I' ] d } (9a)
yV J

V yV u
r

yV V
x '

q,,
- - j

/ /

j 0 / 0

y {[I ' + /— L
' ] c + [J ' + / — K ' ] d } ,L yV y yV V

L yV y yV V
(9b)

where I' , J
' , K

1 and L' are obtained from the corresponding unprimed
yV yV yV yV

quantities by replacing the upper index 3 in the first vector spherical

harmonics in the surface integrals by the index 1.

The total field at the observer coordinate r = r is the sum of the

incident field i:.(r) and the scattered field £ (r). Because the receiver is
i sc

not in general in the far zone, the total field must be calculated with the

exact M 3 and fa's rather than the asymptotic forms used in most scattering

calculations. In the near zone, the radial component of the field is in

general comparable to the e- and ^-components. While the total field can be

calculated from the series expansion in principle, it proved virtually

impossible to obtain convergence in general when the incident dipole field was

included. The reason is that the terms in the dipole field expansion (see eqs

(3) and (4)) contains products of spherical Bessel and Neumann functions which

are usually such that when one factor becomes small, the other becomes large,

so that the product stays almost constant even when a large number of terms

are used. Accordingly, a separate subroutine was written to calculate the

dipole term separately from the closed-form expression [12], and the result

was added to the scattered field after the convergence of the latter was

ascertai ned.

In the calculation of the scattered field, it is necessary to check

convergence with respect to three quantities: the number of m values, the

number of n values (NRANK), and the number of sections (NDPS) in the numerical

integration. Because the number of m values does not exceed n + 1, the first

check is strai ghtforward. Convergence with respect to the last two quantities

can be ascertained only by the slow process of increasing each until the

results converge at all angles. For 4 MHz and the physical parameters used

here, convergence was obtained for N^~ 12, NRANK ~ 32, and NDPS < 100. All

these will go up if either the frequency or the dielectric constants are

i ncreased.
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III. NUMERICAL RESULTS AND DISCUSSION

In figures 4-10, we show the magnitude squares of the spherical

components of the total (dipole plus scattered) electric field and their sum

at the receiver (observer) coordinate (r
Q , 0

Q , 40 ), where <j>

o
= 0 . The

coordinate system is chosen so that the origin is at the center of the

spheroid and the z-axis along the symmetry axis. The dipole transmitter lies

in the x-z plane so that its spherical coordinates are (r^, e^, 0 ). This

choice of the x-z plane, which involves no loss of generality, simplifies the

incident field coefficients greately, because with
4^

= 0 , all the terms with

the factor sin m^ (see eqs (3) and (4)) are now zero while cos m 4^ becomes

unity independent of m. The curves have been plotted for r
Q

= 1.05 a, or 1.05

times the major axis, and r^ = 1.1 a, 0
^

= 90°, while 0
Q

runs in steps of 10°

from 0° to 360°. Results are shown for unit dipole strength and three

orthogonal dipole orientations: p along the x, y, z axes, respectively. For

all these orientations (but of course not in general), the curves are

symmetric with respect to the x-axis (e
Q

= 90° and 0
Q

= 270°), so only the

angular interval 90° < 0
q < 270° is shown. Note that at 0

Q = 90°, both the

transmitter and receiver are on the positive x-axis at a short distance 0.05 a

apart, so the fields are very large in general. Because of the way the

coordinate axes are chosen, the electric field at the receiver has only 0 - and

r-components when the dipole source oscillates along the x- or z-axis, and

only a ^-component when the dipole oscillates along the y-axis. In the last

case, | E |

2 is simply equal to |E I

2
.

L O L (p

The other physical parameters are shown in figure 3. The axes a and b

are taken to be the vertical and horizontal dimensions of an operating

Occidental Petroleum oil shale retort at Logan Wash, Colorado. In figures 4-

10, each figure shows four curves correspondi ng to void ratios 10%, 15%, 20%,

and 25%, respectively. The correspondi ng values of the average dielectric

constant e are calculated with the Lichtenecker formula from the bulk value

[3] 8.8 + 3.7 j : 7.08 + 3.25 j (10% void), 6.35 + 3.0 j (15% void), 5.70 +

2.85 j (20% void), and 5.11 + 2.67 j (25% void).

It will be seen that the curves have generally more structure for 0
Q <

180° (the transmitter side) than for 0
Q > 180° (the far side). Much of this

structure arises from the complex interference between the scattered field and

the incident dipole field. Because the outside medium is highly lossy (Im

e 2 = 3.7), the dipole field is much attenuated on the far side, so the field

9



x

Figure 3. The geometry used in the computations: a = 45.7 m (150 ft), b

25.1 m (82.5 ft), r
d = 1.1 a, 0 . = 90°, r = 1.05 a, 6 = 0°

(10°) 360°, f = 4 MHz, k
Q
a = 2ira/A = 3.84.
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ANGLE 0O

Figure 4. |E |2 V s scattering angle; dipole along x-axis 0
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ANGLE G0

Figure 5. |

E

p j

2 vs scattering angle; dipole along x-axis
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Figure 6. vs scattering angle; dipole along x-axi s .
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ANGLE Q0

Figure 7. IE I

2 vs scattering angle; dipole along y-axis.
<l>
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ANGLE Q0

Figure 8. |

E

Q |

2 vs scattering angle; dipole along z-axis.

15



Figure 9. | E i

2 vs scattering angle; dipole along z-axis„
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ANGLE 0O

Figure 10. 2 vs scattering angle; dipole along z-axis„
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there is primarily the scattered field, which has travelled a much shorter

distance and therefore suffered less attenuation. It will also be noted that

on the far side, where the scattered field is dominant, the field intensity

increases with the void ratio. This is to be expected because a larger void

ratio means a greater difference between the dielectric constants inside and

outside, which in turn causes more scattering. This is also true for the

spherical case, as can be seen from the factor e 2
in eq (A2). For the

cases shown, a 5% change in the void ratio changes the output intensity by

roughly a factor of two for most angles on the far side. There is thus hope

that the void ratio can be determined with some accuracy by measurement of the

output intensity, provided the bulk dielectric constant is known accurately.

This is also limited by the accuracy of the Lichtenecker formula, for which

more measurements with shale rocks would be desirable.

The numerical results presented here were obtained on the CDC Cyber 750

computer at NOAA, Boulder. The general description of the program and program

listing is given in appendices 2 and 3 respectively. For each dipole

orientation and fixed values of the dielectric constants at 4 MHz, it took

approximately 200 seconds to compute the squares of the components of the

fields over the whole angular range. For higher frequencies or larger

dielectric constants, both the number of terms needed (and therefore the

matrix rank in the solution of eqs (7) and (9)) and the number of integration

sections for the surfaces integrals (8) must be increased, thereby driving up

the computer time and storage capacity needed steeply.

IV. CONCLUSIONS AND RECOMMENDATIONS

The present work suggests the possibility of determining the void ratio

of an oil shale retort by remote electromagnetic measurements under suitable

conditions. When the shale rock is highly lossy, the source field is largely

damped out on the side of the retort away from the transmitter, so the field

there consists mainly of the scattered field. This field depends sensitively

on the void content of the retort and thus provides a useful tool for the

extraction of information on the contents of the retort. In practice, an

average dielectric constant for the inside of the retort may be determined

using the observed signals and the void ratio obtained from the average

dielectric constant with the help of relations like Li chtenecker 1

s formula.

In the cases studied here, a small increase in the void ratio produces a

18



significant increase in the intensity of the scattered field. This

circumstance is very helpful in deducing the void ratio from the intensity

measurements. However, many assumptions and approximations are involved in

this approach, and limitations due to some of them are discussed below.

(1) Geometric approximations. After blasting, the sharp edges and

corners of the retort are expected to be rounded off and the retort can

probably be adequately modelled by a spheroid. Perturbation methods are

available to handle small departures from spheroidal geometry, but additional

physical measurements will be needed to characterize the departures and

considerably more programming and computer time will be needed. We have not

been able to ascertain the effects of neglecting the boreholes.

(2) Limitations due to the approximate nature of the relation between

the dielectric constant and the void ratio. This is a sticky question and we

have little to add to the existing literature. The Lichtenecker relation is

used here partly because of its simplicity, and it is in approximate agreement

with all the relevant data we are aware of. There is also another technical

advantage. In the Lichtenecker formula, eq (la), the void ratio V
x
/V is to be

found from the measured values of e and e 2
. Because only the logarithms of

e and e 2
enter the equation, error in e and e 2

will tend to be suppressed,

giving a good determination of V^V. We believe more experiments with

accurate volume measurements on the relevant shale rocks at the operating

frequencies will be helpful.

(3) Possible presence of moisture, etc. The determination of the void

ratio from the measured signals in this model depends on the assumption that

the content of the retort consists of rubble and void. Because water has a

large dielectric constant even at quite high frequencies, a small amount of

moisture may change the average dielectric constant significantly and

complicate the interpretation of the data. This is a serious potential

problem. The presence of pyrites would cause similar problems. Although

there is no difficulty in handling magnetic media in our approach, an unknown

amount of magnetic material would introduce additional uncertainty to the

analysis of the signals.

(4) Computer time. Even at 4 MHz, the amount of computer time needed to

generate the data presented here ran into hundreds of seconds for each void

ratio and dipole orientation. Mainly for this reason, we have not fully

explored the nature of the signal as a function of transmitter orientation, or
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the effects of phase differences between the components of the dipole source,

etc. For general orientation of the dipole source, the field intensity will

not have the symmetry with respect to 90° and 270° in figures 4-10. It is

possible that certain orientations may be particularly favorable for the

determi nation of the void ratio. In the cases studied here, it appears that

the total intensity for 0
q
> 180° (figure 10) with a dipole source oscillating

vertically provides clearer separation between the curves corresponding to

different void ratios.
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APPENDIX 1.

This appendix gives the derivation of the Rayleigh limit of the scattered

field for a spherical retort referred to in the Introduction.

For a spherical retort of radius a, analytical expressions can be found

for the near field when the frequency is sufficiently low so that ka = 2ira/x

(X = wavelength) is small compared to unity. They can be obtained from the

results of Chew, Kerker, and Cooke [9] generalized to absorbing media by

expanding the field coefficients in powers of ka and retaining only the lowest

order terms.

Let the retort be centered at the origin and the coordinate axes chosen

so that the dipole source (dipole moment £) lies outside the retort at

cartesian coordinates (0, 0, -d) (d>a). We expand the scattered field in a

series of vector spherical harmonics in the notation of [9]:

oo m=£

£
sc

(?) - l l {— B

i=l m=-£ n
2
2 w

U,m) vx [h ^(k r)
am

(r)
]

+ h
(1)

(k„r) 1 (r)}. (Al)
M 1 % 2 urn 1

Here, ^ (r) denotes a vector spherical harmonics as defined in Edmonds [10],

h^ v ; (x) denotes the spherical Hankel function of the first kind [11],

oj = 2irf, n 2 and k 2 being the complex index of refraction and wave number in

the (outside) medium 2. It is then shown in [9] that the expansion

coefficients are given by

B
E Ui rn) = -b

£
a
d

£
(£ 1

m),

eM Uim)
= -V

d

M(*i m )»

where a^ and

and the only

b„ are Mie scattering coefficients as defined in Stratton [12],
^ d d
nonvanishing a

E
's and a^'s in our case are

a
d

E
(*.

1
±l) = ±jk

2
3/„(-l)

£
(2t+ l)'

1/2
(P

x

±jP
y
)[)lh[]j(k

2
d) - (t+l)h[)J(k 2

d)],

a
d

E
(2!±0) = jk

2
3(-l)

£
P
z
[4,e(t+l)(2t+l)]

1/2 h[
1

) (k
2 d)/k 2

d.

22



a
d

M Ui±l)
= jk

2
3 (-l)

t
["(2t+l)]

1/2
(P

x
±jP

y
)

Making the small ka expansion indicated above, we find for the leading

terms in the expansion

n ^

a

3 f — p

± + 2 2 i 2 m m
Kc

{r) '
3

• —
• 7-^7 'l [h a

’( k
2
d >

' 2h
o V)]

(rh ( P(k 2 r))

2?
((P coS(j) - P sin(j))cosee - (P sincj) + P cos

x y x y

h
(

J

} (k
2 r) - h ^

i
^ (

k 2 d

)

(P C0S<(> - P sin<j>)sin0 r] + 3P
z
^

J 2

(rh^ ) (k 2 r))‘ 2h^ (k 2 r)cose
sinee - r )}> (A2)

where (r, 0,
<f> )

denote the spherical coordinates of the receiver, the prime

indicates derivative with respect to r, e 19 e 2 denote the complex dielectric

constants inside and outside respectively, and n 2 denotes the complex

refractive index of the external medium. For an oil shale retort, where the

void ratio is typically of the order of 15 percent, e
1

does not differ very

much from e 2
and the factor e

l
- e 2

is a sensitive function of the void

ratio. If the medium outside is highly absorbing, then on the side of the

retort away from the source the total field is dominated by the scattered

field £ . Thus, measurment of the field there will provide valuable
sc

information about the void ratio.
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APPENDIX 2.

This appendix contains a general description of the program and

instructions for its use.

The program computes the incident field coefficients, the elements of the

T-matrix, and from these the scattering coefficients. Two subroutines, GENBKR

and GENLGP, generate the necessary spherical Bessel functions of complex

arguments and Legendre functions. Subroutine GAUSS carries out the numerical

integration over the spheroid surface to give the needed matrix elements.

After the scattering coefficients are calculated, they are multiplied by the

appropriate Bessel and Legendre functions of the receiver coordinates to give

the spherical components E
sc sc

and E
sc

of the scattered field. The

dipole source has been taken, without loss of generality, to be in the x-z

plane with spherical coordinates (r^, e^, ^ = 0). The scattered field is

calculated in the vertical plane
<j>o

= constant (taken to be zero in the

program listed in Appendix 3) for a fixed radial coordinate ro (taken to be

1.1a in Appendix 3), while the angle 6o is varied from 0° in steps of A0

(denoted by DLTANG and with the value 10° in Appendix 3) up to 360°. At each

angle subroutine DIPOLE computes the dipole field due to the same source and

adds it to the scattered field to form the spherical components of the total

near field Ej'
0
*', Eg

0t
:

i

E
t ot

|

2>
|

E
t«t|

2> and
U I

tot

£ |2 =
tot

1

Finally, the program computes and prints IE

..tot . _
,
_tot

, „ ,
„tot

E

2

+

tot

E
t0t

|2 + 2 as functions of

the scattering angle e
Q

(denoted by SCANG in Appendix 3). The geometry is

shown in figure 3.

Following is a list of the input quantities needed to obtain numerical

results:

1.

The real and imaginary parts of the dielectric constants inside

and outside the retort, denoted by DCNR, DCNI; DCNR2, DCNI2,

respectively.

2. The frequency. This is expressed in terms of the vacuum wave

number WN = k
Q

= 2-rrf /c in the input.

3. The size parameter k
Q
a = 27Tfa/c = CONK (a = major axis of the

spheroid, which is taken to be prolate in Appendix 3), and the

ratio of the spheroidal axes a/b (denoted by AOVRB).

4. The radial coordinates of the dipole transmitter (r^) and of the

receiver (e
Q ).
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a. In subroutine DIPOLE, ( =RD )
is entered as (r

d
/a

)
• (

k

Q
a /k

Q )

,

or RD = (r
d
/a )*C0NK/WN, r

d
/a being taken to be 1.05 in

Appendix 3. The coordinate r
Q

(denoted by R0) is entered as

(r
Q
/a)*a = (r

Q
/a

)
• (k

Q
a/k

0 ), or RO = (

r

Q
/a )*C0NK/WN, with r

Q
/a

being set equal to 1.1 in the program. Both r
Q
/a and r

d
/a

may be set at any value > 1. However, if r
Q < r

d , it will be

necessary to make the interchange of Bessel and Hankel

functions indicated in section III.

b. In subroutine AUDPRC, they are entered through the arguments

of the radial functions p '(eRH0P) = (r
d
/a)*k 2 a = (r

d
/a)

k
Q
a /e2 = (r

d
/a) *C0NK*CSQRT (DCN2)

, and p (eRH0) =

(r
Q
/a) • k

2
a = (r

Q
/a) *C0NK*CSQRT(DCN2)

.

5. The angular coordinates of the transmitter e
d

= THETAD,
<j>

d
being

set equal to zero, and the azimuthal angle of the receiver <(> e

PH. They are given the values THETAD = 90° and PH = 0 in

Appendix 3.

6. The cartesian components of the dipole moment P
x

= PX, P^, = PY,

P
z

= PZ. These are allowed to be complex so that phases between

the components may be introduced. They have to be entered in

both subroutines ADDPRC and DIPOLE.

7. The number of values of m (Nm) and n (NRANK).

8. The number of sections used in the integration over the spheroid

surface (NDPS).

9. The angular increment (denoted by DLTANG) in the scattering angle

(denoted by SCANG), and the number of angles for which the

squares of the field components are calculated. The last

quantity is denoted by NUANG and is equal to 360°/DLTANG + 1.

Most of these input quantities are entered on four data cards at the end

of the program (see listing. Appendix 3).

The first card lists Nm, NRANK, and three numbers (1,8,1) which are to be

left alone.

The second card lists CONK, AOVRB , WN, DCNR , DCNI.

The third card gives NDPS.

The fourth card lists THETAD, PH, DCNR2 , DCNI2, DLTANG, NUANG.
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The data on these cards must be entered so that the last digit of the

first entry is on the 12th space, the second on the 24th space, the third on

the 36th space, etc. These data are read by subroutine RDDATA and stored in

various common blocks for use in the other subroutines.
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APPENDIX 3. Listing of the Program

PPPGR4M SHALE ( INPUT, OUTPUT, TAPE 5 = INPUT, TAPE 6 * OUTPUT)
r OM Pi cy A,B,nCM»S0,0S,PH,PB(40),HRK,RRK.»HFPS»BEPS,S*$QP,QSR,BKK,
1HTBKX , RTBKK , S Al, cri, SQP? ,D,CCC, RSSL SP ( 41 ),CNEUMN( 41) » PBESSLI40)

,

?SQ?»QS?,DCM?,CI»RP,HH,CCKP,CIKP,DCKK,BSLC M P,CNFUM,ACANSR
C PERFORM TUP NUMERICAL INTEGRATION AND FILL THE A AND R MATRICES.

rnMMPM OTP , PTn , r P T

COMMON /MTXCOM/ NR ANK, NR ANKI , A ( 80, 80 , B ( 80, 80) ,C M XNRM( 80)
common /en^C dm/ PNVL

[ G( Al) . PSLCMP ( A1 ) , CNFUM( A1 ) , BSLKPR ( 41 ), bslkpi
1(0)
COMMON /r MVC n M/ MM, K M\/,r MI ( AO ) , c MV, CM?, TWM, proom
in MM ON /ROVCOM/ DCNP,0CNI,CKPRR,CKPRI,CKR,0CKR,C0NK,A0VR8,WN,IB
Common /TUT COM / THFTA,STNTH,CnSTH,C0H(6),F°PSf6),NSFCT,NDPS(fc)

1, TMFTAO

,

0 H , KC FCt
COMMON /UVC com/ AC ANS (361 , ?? ) , AC ANSR( 361 ), DLTANG,DCNP2, DCN I2,NUANG
DIMENSION n L p M T X ( ? 5 6 C 0 ) »

r
L R T 0 T (1444) ,RH(40),WT (300),ASC(300)

F OUTVAL pnc F (A(l,l),CLRMTX(l)),(ACANS(i,i,i),CLPTOT(l))
C set program constants.

Cl = ( 0,0, 1 .0)
DTP = .017^532QP519QA3
PTO = 57. P9577Q5131
CPI = p .1^159?6535P9R

C CALL ROUTINE TP dead data and print hfadtngs FOR OUTPUT
20 CALL p D D AT A

C CLFAP THF ACCUMULATING ANSWER REGISTER (USED IN ADDPPC).
on AD J=1,1444
ClPTpT(J) = 0.0

40 CONTINUE
DO 41 J = 1 , 3 61
ACANSP(J) = 0.0

41 CONTINUE
DCM? = CMPLX (nCNR?,DCNI2)
so? = C SORT ( OCN?

)

0 S 3 = 1 .D/SO?
dcn = c m plv(dcnp,dcnt)
SOP = r SORT f ncN/DCN? )

OSP = 1.0/SOP
SOP? - SQP*SOP
so = ^S OPT ( DCN

)

0* = 1,0/SO
c set multiplier p 8 Q DFPENDenjt ON IP VALUE (SVMMFTPV INDICATOR).

RP9 = 1.0
IF(IP.FQ.A) R 8 9 = ? , 0

rdyect = 1,0
C SET Ud a LOOP FOP EACH M VALUE.

DP QOO I M = 1 , mm

C SFT V nFPFNDFNT VARIABLES.
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C M V = CMT( IM)
K M v s r mv
CM? = c mv* 3

)
1 ?

prfidm = l.o
IF(kmv.gt.O) go in 4 4

FM * 1.0
GO Tn 6

C

44 FM z ?, o

OIJANM * CMV
on 5? I FCT = 1,KMV
0 U A N M z 0'.JANM+1,0
pPnOM = OUANM*PPOOM/?,0

52 CONTINUE
60 OEM a ? .O/FM

TWM = ?.0*CMV
C TNTTJALI7F ALL MATRTX AREAS TO 7 F R P

n n R A I = i,?5frC0
CL pmty ( T ) = 0.0

RQ CONTINUE
€ S F T U D A L n 0P FAR ALL VALUES OF THETA.
c SFT IIP GFNEPAL l OOP FOP CORRFCT NUMRER OF I NTF GR A TT ON SECTIONS.

AO ROO TSFCT = 1,NSFCT
k R F C T = T S P C T

NTHFTA = NOPS(ISFCT)
IF (TSFCT. FO.l) PALL GAUSS(WT # ASC*NTHETAfO.OfFPPS(ISECT))
TF(TSFCT.NF.l) CALL GAUSS ( WT . ASCjNTHETA* EPPS ( ISFCT-1

)

t EPPS ( I $ EC T )

)

C FNTFD THFTA LOOP F P o EACH SECTION,
0° 7 0 A ITMT A = 1, NTHFTA
THFTA = ASC(ITHTA)
CPSTH = COS(THFTA)
RINTH = STM (THFTA)

c gfmfratf thf lfgenorf polynomials.
CALL G F M L G P

c EVALUATE kp and ITS DEPTVATTVE AS a FUNCTION nF THFTA.
3 4 R CALL GFNKP

c GFNFPATF ail NFCESSARY RFSRFL and NEUMANN FUNCTIONS AND THEIR PATIOS.
CKPRD = REAL ( SQ?*CKR)
AKPRT a AIM AG(SQ2*CKP)
CALL G E N 3 K

R

A C K P = CMPL X (AKPRR ,CKPPI

)

CTKP z 1 . 0 / C C K

P

DC*K * RQ?*DCKP
DO 340 I*1,NRANKI
RSRLSPf T ) = R S L C M ° ( I

)

CNFUMN(I) = CNFUN(I)
3 4Q CPNTINI1F

CKPRR » PFALfSQ*CKR)
CKPPT a ATMAG (SO+CKR

)

PALI. GENRKR
I F ( T THT A ,NF. NTHFTA) GO TO 7Q

70 conttnuf
DO 3R0 K * l.NPANK
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r»

o

r>

o

n

o

r>

R R E $ S L ( K ) = R S S L S P (K ) /PSSLSP(K+1

)

PH(K1 = (R5SL^P(K)+CT*0NFU m N(K) ) / ( R EEL* P ( K + l ) +C I*CNEUMN ( K + l ) )

pp (K)=$OP*CMPLX (RSLKPP(K) » R S L K P I (K) ) /CMPLX(RSLKPP(K.+ 1)*BSLKPI ( K 1

)

1)

3^0 C0NTTNUF
CP^SIM s wt ( ITMTa ) ** tnth

c ^ F T IJD A !_nr)D ppp EACH ppw OF THE MATRICES.
CPHW = 0.0
CROW* * CMV
n P *no T p OW = 1,K<PANK
TPnui * T d 0 W + N P A N K

c p o w = c p n w +

i

. o

CPnv/M » CPOWM + 1.0
r onwi =CP0W+1 .0
pp = pr ( T P OW )

HH = PM ( TPOW

)

C EFT hd A L 0 fl D Fop faCH COLUMN OF THE MATPICES.
Cmt * 0.0
C C OL m = C M V
no aoo tool = 1 , N R A N

K

IC0L1 = TCOL+NRANK
CCOL * CCOL+1.0
ccolm = ccni.M + i,o
ccon = croi + i.o

c CALCULATF FPFCUFNTl Y USED VARIABLE COMBINATIONS.
CPIJ = CPOW+CCPL
CPEETJ = CPOW*CC0L
C M C P C 0 = CM? + OEM*CP EET J*COETH**?
DNPnn 0 = PNMLLG(TROW)*PNMLLG(ICOL )

PNPOCl = p N m l L C ( I P 0 W ) * p N M L t G ( T C 0 L + 1

)

PM PICO = P N M l l G ( I P 0 W + 1 )*PNMLLG( ICOL)
P

N

0 1 C 1 = PNMLLG-( IPnw + 1 )*PNMLLG ( ICOl +1

)

R 1 A = CPnW*C r'ETHtPNPlCl“CPnWM=4'PNP0Cl
RIB r CC0l.*C0STH*PNQ 1C1-CCOLN*PNP1CO
R k K = P R ( ICOL )

HRK=(RGELGP(IP0W+1) +CT+CNFUMN ( IPOW+1) )*CMPLY(RSLKPR(IC0L+1)»B$
ILK PT ( TC PL +1 ) )

rrk x RECLEP(IPPW + n*CM D LV(PELKPPfICnL + l)*RSLKDi(icOL+l})
mc PS = q^p^hPK
P F PS x qfp^bpk
IF(IR.EO.Q) GO TO 380

c IF TR = R (MIPPOP symmftpv R 00 y ) , I =L *0 IF IPOW AND ICOL ARE BOTH
c 000 OP pnTM FV/FN, J=K=0 IF IPOW AND ICOL APF 000, EVFN OR EVEN, ODD.

TF( ( IPOW-nCOL ) . FO. ( { IRPW+ICOL ) /? )*?) GO TO 393
C TFFT F n p MjQ (IF M«0 TMF i ano L EURMATRTCFS ARF ZERO).

380 T E (KMV. FQ. 0 ) GO TO 3 00

CALCULATE THF x , L

,

I , J ANn k,L»T,J (PRI M E) MATPTY ELEMENTS AND PLACE
THFM TN THF a AND R MATRICES RFS D ECTTVELY SO AS TO FORM A-TRANSVERSE
ANn r-tpam^vfp^f MATRICES.

CALCULATE THF TFPM epp THF CURRENT ELEMENT IN TMF I MATRIX,
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r>

o

r>

r>

o

o

r>

o

o

B 1 R 1 A + B 1 B

MTRKK = HM*8XK
RTBKK = RP*PKK
SA1 * PNPlCl*(CROW*CROVl*BKK+CCOL*CCOll*HH-CRSSIJ*(CRIJ+2.0)*CIKP)
i^nrK^^s imth
S = SAl.+ f CC* D *( 1 .C + HTRKK )-CC0L*HH-CPnw*8KK4CPSSIJ*CIKP )*R1*CCKP
A ( Tent, IP0W1 ) =A f TOOL, TR0W1 ) +B89*CMV*S

P

M $ IN*S*HBK
S PI * PNP1C1* ( CPnW*CRnwi*BKK + CCOt*CCnLl*BP-CR$S IJ* ( CP IJ+2.0) *C IK P)

l+OC^^^STNTH
S=(COKP*(1.0+BTRKK)-CCr)L*RR-CRnW*BKK+CRSSIJ*CIKP)*Pl*CCKP+SBl
R ( TCni# TPHWl ) =P f irnL , TPQWl ) RP9*rMV*SPNSIN*S*BBK

CALCULATE T HP TFRM FOP THF CURRENT ELEMENT IN THF L MATRIX.

5 = (CPKP*(S0P? + HTBKK) -CCOL*HH-CPOW*B KK + C p$S I J*C IRP)*bi*CCKP+SA1
a ( TCHL I » 15 nw ) =A ( icon. IROW ) -B89*CMV*SPMSIN*S*HEPS
c = ( cc k P* ( PQRP + PTPKK )-CC0L*RP-CP0W*BKK+CPSST J *C I K P )*R1*CCKP+$B1
B (TCHLlflROW) *B(ICOLl* IPnw) -B89*CMV*$RMSIN*S* BEPS

3^0 TF(TP.PQ.B) GO tq ADO

CALCULATE THF TFPM POP THF CIJPPFNT ELEMFNT in THF J MATPIX.

3 9? Al? = CMCPCn«PNPiri-OFM«(CPnw*CCniM«cnSTH*PNPlCO + CCOL«CROWM^COSTH 1»[ PN
lROCl-CRnvM*CCOLM*PNROCO>
B 1 A * CCnL*CCnil*BlA
RIB = C PPW*CP CW1*R IB
n = ORM+ncKK
CCC = SOP?*HH
S=(CrKP*fRKK-CCC)+SQP?*CPnw-CCOL)*Al?«CCKP+(BlA-SOR?«BlB)«GINTH*D
A(TCOll,IPnwi) »A(TC0L1*IR0W1) +aBQ*FRM$TN*S*HFPS
CCC = RP*PQR?
S*(CCKP*(BKK-CCC)+S0R3*CR0W-CCnL)*A12*CCKP-(S0R2*BlB-BlA)*SINTH*D
P•( ICDL1 TR0W1 ) =R ( TCHL 1 . TR0W1 ) + B 8 9*S P MS I N*S * RF PF

CALCULATE the T F P n FPO THF CURRENT ELEMFNT IN THF K MATRIX.

81 = (R1A-B1P)*SINTH
S * (CCKP*< 8KK-HH) +CPnW-CCOL)*A12*CCKP+Bl*0
A ( ICUL * TP OW ) = A ( T COL • T PO W ) +B89*SR MS T N*S*HBK
p = (CfKP« (RKK-PP )+CPOW-CCnt )*A1?*CCKP + Rl*n
o ( TCOL , TPPW )

= R
( ICOL > TPOW) +r89*$PMSIN*S*RRK

AGO CONTINUE
C calculate thf normalization FACTOR (USED IN AO0PPC).

Cppow * ip nw
IF(KMV.GT.O) GO to
FCTKI = 1.0
GO TO 440

4?fc IP (IROW .GF.KMV) GO TO *R0
C M YMP M

( IP PW ) = 1.0
GO TH 6 CO

430 T B F C T = JPOW-KMV + 1

TFPCT * TPOW+KMV
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FPPnn * trfct
FOTKT = 1.0
nn A3? LFCT = TBFCT.IEFCT
FCTKT = FCTKT*FPPPD
p ppoo = p dr nn + i ,o

A3? CONTINUE
A AO CMXNPM(IPnW) = 4.0*CKP0W* (CKROW+1. 0) *FCTKI/ ( EM*(2 .0+CKR0W+1.0))
600 CONTINUF
7 00 CONTTMIJF
800 rnMTIMUF

C ppccpps C 0 N P M T F 0 MATRICES
CALL PPCSS M

900 continue
O p T 0 20
FNO
SUP POUT TK'P GAUSS ( WT» ASC»N, A A, BB )

niMFUS TPM WT( N)

,

ASC ( N

)

HOUBLF PRECISION PT, CONST
0 ata oj .CONST, T PL / 3. 1415926535897900, .14067881635700, 1. E-l?/
OATA C1,C?, C3,C4/ . 125, -.08 07291666, .246C 2864 58,-1 .824438767/
I F(N ,NF .1 ) PP TO i

A S C ( 1 ) = 0.5773502692
W T

( 1 ) = 1.0
P p T U p N

1 ON = N

NO I V 2 * N/7
N P 1 * N + l

N N P 1 = N * N P 1

A P P F P T = 1. /O^OPT( (N + 0.5)**2 + CONST)
CPN1 * 0.5*(BB-AA)
0 ON? = 0.5*(BB + AA)
on ioo k = i , not v?
R = (K-.?S)*PI
B T S 0 = 1. / ( B*B)
PPPPHT = R*(l .+RISQ*(C1+RTSQ*(C2+BISG*(C3+C4*BISQ) ) )

)

X = CnS(APPP0T*PF9PPT)
113 p M 2 = 1.

DM1 = X

OP 110 IN = ? * N

P = ((2*tn-1)*x*pmi-(in-h*pm2)/IN
DM? = o M 1

110 P M 1 X P

P M 1 - p M ?

Al'X = 1 « / (l.-XTX)
0 F P 1

D = QM* ( DM1_X*P ) *AIJX

0 f p d d * (?.*X*0FP1P-NNP1*D)*AIJX
P ATTO x P / 0 F P 1 D

XI = y-patio*(1.+PATTQ*OFP?P/(2.*DER1P))
TF( A«S( XT-x)-TOL) 111,111,11?

11? X = XT

GO Tn 113
111 A F ^ f K ) = -X

W T ( K

}

x ?.*(l.-XTX)/(0N*PNl)Tt2
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non

oooo

o

o

n

r>

r>

o

ASCfNPX-K) « - A $C ( K )

100 UT(MPl-K) = WT(K)
I F ( MOf) ( N , 3 ) »F0*0) OP T F H4
ASCfNDXVP+l) * 0.0
N m 1 = N-l
MM? * n-2
prod = dn
DO 1?0 K * 1,NM?,2

120 P*? n n = FL0AT( NM1-K ) /FLOAT (N-K )*PR0D
WT ( NO TV 2 + 1 ) * 2./PR0D**?

1 1 A DO 130 K = 3,N
A^C(K) * CONI* ASC ( K ) 4C0N?

130 WT(K) * C0M1*WT(K)
return
FND
SUBROUTINE podata

C A ROUTINE TO READ INPUT F n P THE PROGRAM.
COMPLEX ACANSP
COMMON /MTXCOK/ NPANK,NRANKI
COMMON DTP , RTH, CPI
COMMON /CMVCOM/ NM,KMV,CNI ( AO)*CMV,CM?,TWM,PRODM
common /THTCOM/ THETA,SINTH,CnSTH,C0H(6),F p PS(6),NSECT,NOPS(6)

l, thftad,ph,ksfct
common /bdycom/ dcnp,dcni,ckprr,ckpri,ckp,dckr,conk,aovrb,wn,ib
COMMON / UVCC0M/ACANS(361> 2, 2 ) , AC AN S R ( 36 1 ) , DLT ANG * D CNR ?, D CN I 2, NU ANG
COMMON /OUTCOM/ I OUT
DIMENSION F p D F G ( 6

)

READ necessary INPUT DATA.

C ARD1 NM = NUMBER OF M VALUES, NRANK = N VALUE (MATRIX ORDER),
N^ECT = NUMBEP OF sections IN THE BODY, IB = SYMMETRY CODE IB * 8

FOR MJPROP SYMMFTPY ABOUT THETA = 90 DEGREES, IB * 9 FOR GENERAL
PEAD(B,BO) nm.npank,nsect,tb,iout
TF (FOF (5) .NE.O) GO TO 190
NPANKI = NPANK+1
W P I T f ( 6,89)
WPTTR(6,9?) NM,MRANK,NSECT, IB

CARD ? — CONK » KA OF RODY,A0VRB = A/B, PATIO OF MAJOR TO MINOR
A X T S, WN = VACUUM WAVF NUMBER USED IN ADDPPC,DCNR » REAL PART OF
DIELECTRIC CONSTANT INSIDE, DCNI = IMAGINARY PART OF SAME.
PFAD( 5, 96 ) CPNK,AOVRB,WN,DCNR,DCNI
IF (FOF(5).NF.0) GO TO 190
WRITE (6, 100)
WPITF (6,104) CONK, AOVPB,WN,DCNR, DCNI
HO 5 1=1,40
CMim * FLOAT(I-l)

5 CONTINUE
TFfNM.EO.l) CMI(l) = 1.0

CARD 3 — - NDPS = NUMBER OF INTEGRATION DIVISIONS FOP EACH SFCTICN
HE THE BODY (MUST BE A MULTIPLE OF 4).
RFADC 5, BO ) (NDPS ( I ) » I-1,NSECT )

IF (EOF (5) .NE.O) GO TO 190
WeiTE(6,l?0) (NDP3(I),I»1,NSECT)
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THETAO = THFTA r F DIPOLE.
PM * AZIMUTHAL ANGLF OF OBSERVATION PLANE,
DCNP? + C I *DC NI 2 = COMPLEX DIFLFCTPIC CONSTANT OUTSIDE.
Dl.TANG s INCREMENT OF SCATTFR TNG ANGLF IN SCATTERING PLANE IN DEGREE
NUANG = NO. hf SFCTTHN^ IN SCATTERING PLANE WITH 360 OFGRFFS
RFAD(5,Q6) THFTAD, PH, DC NR 3, DCNI2, DLTANG, NUANG

IP (PDF (5) .NP.O) GO TO 190
WPTTF (6,117)
WPJTF (6*104 ) THPTAD,PH,DCNR?,DCNI2

C COMPUTF PND POINTS FOR THFTA.
CALL CALENP
DO 140 I * ltNSFCT
FPDEG(I) = PTD*EPPS(I)

140 CONTINUE
WRITE (6,148) (EPDFCm,I = l,NSECT)
R FTIJPN

190 WRITE (6,201)
STOP

80 FORMAT ( 8112)
88 FOPMAT( 1H144X, 60H CASES MATRIX RANK

1 BODY SHAPF)
97 FORMAT ( 1H044X,4H5 )

96 FORMAT ( 5E 1 2 • 5, 112

)

117 PORMATf 1H025X, 79HVARI0US PARAMETERS THFTAD
1 DCNR? DCNI 2

)

100 FORM AT( 1H029X , 76HB0DY PAPAMFTFRS K ( A

)

1 WN DIE LECTR IC1 )

104 FORMAT( 1H044X, 5P15, 3)

120 FORMAT ( 24H0 I NT E GR A TI ON S / S E C T 1 0N8 1 1 2 , / < 1H02 3X , 8 1 1 2 )

)

148 F0RMAT(24H0 END P0INTS8F12.4, /( 1H023X,8F12.4) )

201 FORMAT( 1H0, 23H***** fnd OF DATA 4****)
END
SUB POUT INF GFNLGP

C A ROUTINE TO GENFRATF LEGENDRE POLYNOMIALS.
C THE INDEX ON THF FUNCTION IS INCREMENTED BY ONE.

common / mtxcom/ nrank,nranki
COMMON DTR,RTD,CPI
COMMON / FN C COM / PNMLLG(41)
COMMON /CMVCOM/ NM, KMV,CMI ( 40) ,CMV, CM2, TWM, PRODM
COMMON /THTCOM/ THFTA, S I NTH, C OSTH, C DH ( 6 ) , F P PS ( 6 ) , N S EC T , NO PS ( 6

)

DTWM * TWM+1.0
I F(THFT A) 16, 4, 16

4 IF(KMV-1)6, 12,6
6 DO 8 ILG - 1, NRANK

I

PNMLLG ( ILG) * 0.0
8 CONTINUE

GO TO 88
12 PNMLLG ( 1) = 0.0

PNMLLG(7) « 1.0
PLA - 1.0
GO TO 48

SECTIONS

PH

AOVRB
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16 IF(KMV) 20,20,40
C THE SPECIAL CASE WHEN M » 0.

20 PLA = 1.0/SINTH
P L R » C0STH*PLA
PNMLLG(l) 3 PLA
PNMLLG ( 2) = PL B

T B EG = 3

GO Tn 60
C GENERAL CASE FOP M NOT EQUAL TO 0.

40 00 44 T LG = 1,K*V
PNMLLG* ILG) =0.0

44 CONTINUE
PLA = p RODM*S INTH**( KMV-l

)

pnmllG( KMV+1) = PLA
48 P L B = r)TWM*COSTH*PL A

PNMLLGL KMV+a) = PLB
IBEG = KMV + 3

C 00 PEGU PSION FORMULA EOP ALL REMAINING LEGENDRE POLYNOMIALS.
60 CNMUL = IBFG+IBEG-3

C N M = 2.0
CNMM a DTWM
00 80 ILGR a IBEG.NRANKI
P LC = (CNMUL«rOSTH*PLB-CN M M«PL A ) /CNM
PNMLLG(ILGP) = P LC
PLA * PLB
P L 8 = PLC
CNMUL = CNMtJL+2.0
CNM = cnm+1,0
CM mm r CNMM+1.0

80 CONTINUE
88 RETURN

END
SUBROUTINE GENBKR

C GENERATE BEESEL FUNCTIONS FOP COMPLEX ARGUMENTS.
C THE INDEX ON THE FUNCTION IS INCRFMENTFD BY ONE.

COMPLEX CKPR,RJ(410)»A,PX,P$LCMP,CNEUM,CKP2
COMMON DTP » P TD » C P T

COMMON /MJXCOM/ NR ANK, NR ANIX I

COmmun /FNCCOM/ PNMLLG(41 ) ,BSLCMP(41 ),CNEUM(41 ) , BS LK P P ( 4 1 ) , RS LK P I

K 41)
COMMON /BDYCHM/ dCNR,0CNI,CKPPP,CKPPI,CKR,DCKP,CONK, aovrb,wn,tr
common /THTCOM/ THETA, SINTH, C0STH,CDH(6), EPPS ( 6)> NSEC T>N DPS ( 6)
DIMENSION KM(410) ,L( 41)
CKPP a CMRLXf CKPRP,CKPRI )

PM = CAB? (CKPP )

DO 45 NRFS = 1,5
NVAL = 2*NR ANK I*N3 FS

GENERATE BESSEL FUNCTIONS.

PJ(NVAL+1) » (0.0, 0.0)
PJ(NVAL) = (1.0, 0.0)
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TE(RM.GT.?.0) RJ(NVAL) = ( 1. 0E-10* 0.0)
I FCRM.GT. 10.0) RJ(NVAL) * ( 1 • 0E-20> 0.0)
IE (RM.GT.25.0) RJ(NVAL) = ( 1 . 0E-30 * 0 . 0

)

TF*NVAL+2
A = C*IN< CK PP ) /CKPP
* * 0

do 10 I=?*NV&L
T J = T F — T

RJ(TJ-l) = RJ ( IJ ) * FL OAT ( 2* I J— 1 ) /CKPP-RJ ( I J + l

)

IF(CABS(RJ(IJ-1)).GT.1.0E10) GO TO 8

GO TO Q

8 K = K +

1

PJ(IJ-l) = RJ (I J-1)*1.0E-10
PJ(TJ) = PJ ( TJ )*1 .0E-10
KM C I J ) * K

9 KM ( I J-l ) * K

10 CONTINUE
py = A/ p J ( 1

)

L ( 1) = 0

DO 1*5 J * ?,NRANKI
L ( J ) = L ( J-l)
I F ( KM f J ) .NF »KM(J— 1) ) L(J) = L ( J-l ) +1

1*5 continue
nn ?o I=1 .npanki
bslcmp(I) * p j

(

n*py*io.o**(-L (nno)
RSLKPR(I) = REAL(BSLCMP(I )

)

BSLKPI(I) = AIMAG(BStCMP( I)

)

20 CONTINUE

GFNFPATF NEUMANN FUNCTIONS FOP TEST.

CNEUM(l) * -CCOS (CK°P ) /CKPR
CNEUM ( 2. ) * C N F U M ( 1 ) / CKPR—

A

DO 30 I=3*nrankI
CNFUM(I) = CNFUM( 1-1 )*FL0AT(?*I-3)/CKPR-CNEUM(I-2

)

30 CONTINUE

PERFORM TWO TF STS ON RFSSFL AND NEUMANN FUNCTIONS. FIRST TEST IS
MOST ACCURATE FOR LARGE ARGUMENTS AND THE SECOND IS MOST ACCURATE
FOP SMALLER ARGUMENTS. IF EITHER TEST IS PASSFD, FUNCTIONS ARE GOOD.

FOP LARGE ARGUMENTS APS(BESSEL) SHOULD EQUAL ABS (NEUMANN)

.

C = 1.0E-05
QUART = CARS(PSLCMp(l) )/CA8S(CNEUM(1) )-1.0
OUANT > CABS( BSLCMP(NRANKI) ) /CA8S(CNEUM(NRANKI ) )-l,0
IF ( (ABS (QUART) .GT.C) .OP. (ABS(OUANT) .GT.C) ) GO TO 32
RETURN

c PERFORM WPONSKIAN Tf S T IF LARGE ARGUMENT TEST FAILS.
32 CKP? = CKPR**?

C BFSSEL TEST
OUANR T « CABS(CKR?*(PSLCMP(3)*CNFUM(1)-PSLCMP(1)*CNEUM(2))-1.0)

C N F U M A N N TEST
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OUAMNT = CABS(CKR2*( BSLCMP(NRANKI )*CNEUN(NRANK )-BSLCMR(NRANK)*CNEU
IMfMPANK I) )-l ,0)
IF( (OUANBT.GT.C) .OP. ( CUANNT.GT.C) ) GO TO 45
RETURN

45 CONTINUE
46 THTPPT = PTO^THFTA
60 PFTIJPN

F NO
SUBPOUT INF PPCSSM

C A ROUT INF TO SOLVP TH F EQUATION T « ( A- IN VF P S F ) *B ( ALL MATRICES
C A P F TPANSPOSFD) USING GAUSS-JORDAN ELIMINATION.

COMPLEX A,B,«IJNAy,ARAT,TMAT(flO,BO)
COMMON /MTX CO m / NP, NR I, A { BO, BO) R( 80* 80 )

COMMON /OUT COM/ IOUT
EQUIVALENCE ( L » FL ) , ( K , FK ) ( P ( 1 , 1 ) , T M AT ( 1 , 1 )

)

N = ?*NP
C START REDUCTION OF THE A MATRIX.

DO 80 I : 1 »

N

C SEARCH FOP THF MAXIMUM ELEMENT IN THE ITH ROW OF THE A-MATRIX.
ATJM&X - A ( 1,1)
J M A X = 1

on 10 J * 2> N

TF(OABS( A(T,J )).LF.CAPS( ATJMAX) ) GO TO 10
AIJMAX = A ( I , J )

JMAX * J

10 CONTINUE
TF AIJMAX IS 7FR0 ( AS IT WILL BE FOR ANY ROW (OP COLUMN) WHERE THE
INDEX M IS , G T . THE INDEX N, I.E.* THF LEGENDRE FUNCTIONS FORCE THOSE
MATRIX Fl.FMPNTS TO ZEPOJ.THFN THE MATRIX IS SINGULAR SO SOLVE THE
REDUCED MATRIX (ORDER = 2* ( N P ANK-M ) ) .

TE(CA«S (AIJMAX) .GT. 0.0) GO TO 20
JMAX = I

GO TQ 75
NORMALIZE THE ITH ROW BY AIJMAX (JMAX ELFMENT OF THE ITH ROW).

20 00 30 J = 1,N
A ( I » J ) = A(T.J)/AIJMAX
NORMALIZE THF ITH ROW 0 P B.

B ( I, J ) = B( I* J ) /AIJMAX
20 CONTTNUF

USE ROW TRANSFORMATIONS TO GET ZEROS ABOVE AND BELOW THE JMAX
PLEMPNT OF THE ITH ROW OF A, APPLY SAME ROW TRANSFORMATIONS
TO TH C B MATRIX.
DO 70 K = 1,N

TF(K.EQ.I) GO TO 70
APAT « -A(K,JMAX)
DO 50 J = 1,N
IE(CABS(A (I, J ) ) .LE.O.O) GO TO 50
A (K, J ) = AR AT* A ( I, J ) +A (W , J)

50 CONTINUE
A (K, JMAX) = 0.0
00 60 J=1,N
TE(CABS(B( I,J )) .LE.O.O) GO TO 60
R(K,J) = APAT*R( I, J)+B(K, J)
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60 CONTINUE
70 CONTINUE

STORE ROW COUNTER (I) IN TOP ELEMENT OF JMAX COLUMN. THUS,
THE TOP POW OF A WILL CONTAIN THE LOCATION OF THE PIVOT
(UNITY) Ft EM ENT OF EACH COLUMN (AFTER REDUCTION).

75 L » I

STORE THE INTEGER I TN THE TOP ROW OF A.
A ( 1, J MA X ) = FL

80 CONTINUE
THE REDUCTION OF A IS COMPLFTE. PERFORM POW INTERCHANGES
AS INDICATED IN THE FIRST ROW OF A.

DO 1?0 I = 1,N
K = I

PUT THF INTEGER VALUE IN A INTO K.
<?0 FK = A ( 1 , K )

IF(K-I) QO, 120, 100
IE K ( 1 » I ) is LESS than I, THEN THAT RQW HAS ALREADY BEEN
INVOLVED IN AN INTERCHANGE, AND WE USE K(1,K) UNTIL WE GET
A VALUE OE K GREATER THAN I (CORRESPONDING TO A ROW STORED
BELOW THE TTH ROW )

.

100 Dn 171 J * 1 ,

N

A RAT = R ( I , J )

P ( T, J ) = B ( K, J )

B(K,J) = A PAT
171 CONTINUE
120 CONTINUE

C the TRANSPOSED T MATRIX IS STORED IN B. TRANSPOSE TO GET THE T

C matrix AND STORE IN A,

DO 140 I = 1 ,

N

DO I BO J * 1 ,

N

A ( I, J ) * B( J, I

)

130 CONTINUE
140 CONTINUE

C TRANSFER THE T MATRIX FROM A INTO TMAT.
DO 160 I » 1 , N

DO 150 J = 1 N

T M AT ( I , J ) = A ( I , J )

150 CONTINUE
160 CONTTNUF

CALL ADDPRC
RETURN
END
SUBROUTINE ADDPRC

C A ROUTINE TO OBTAIN THE SCATTERED FIELD COEFFICIENTS AND CALCULATE
C THE TOTAL N FA R FIELD IN THE AZIMUTHAL PLANE PHI = CONSTANT.

COMPLEX A,TMAT,AD1(80),AD?(80),FNGANS(361,2),H1(41),H2(41),BJ1(41)
1»BJ?(41 ),CI,THC,PHC,RC,CKPp,0CN,DCN2,RH0f PHOP, HANK (41 ) , ACANS,
2ACANSP»BSSLSP,CNEUMN,PC0MP(361),S1,S2,HANKP(41) ,BSSLPP(41),
3CNF!JMP(41),AD1X(80).A017(80)»A02Y(80),SI,PX,PY,P7,FG1(80),FG2(80),
4W,ETHETA,EPHT,ER»FTH(361)»FPH(361),FPC(361)
COMMON DTR, RTD, CP I

COMMON /MTXCOM/ N R ANK , NR ANK I . A ( 80 , 80 ) , TM A T ( 80 , 8 0 ) , C MX N P M ( 80

)

COMMON /FNCCOM/ PNMLIG(41),RSSLSP(41),CNEUMM(41),BSLKPR(41),
1BSLKPT ( 41

)
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COMMON / ROYCOM/ DC NR, DCN I , CK PRR , CK P R I * CK R, DCKR , CONK , AO VR B , WN , IB
COMMON /CM V COM/ NM,KMV,CMI< AO) *CMV»CM2,TWM» PRQDM
COMMON /THTCQM/ THETA, SINTH,C0STH,CDH(6),EPPS(6),NSECT,NDPS{6)
IdHFTAD, PH, KSFCT
COMMQN/UVCCOM/ACANS (361,2) » AC AN S R ( 361 ) , DLT A NG, DCN P2» DCNI2»NUANG
common /OUTCOM/ tout
DIMENSION ZXOLD(361)»ZYOLD(361),ZPOLD(361)
LOGICAL TEST
DATA TFST/.TPUE,/
NP? 2 ?*NPANK

GENERATE THE INCIDENT DIPOLE COEFFICIENTS ADI AND A D 2

•

CT = 10.0,1.0)
DCN = C MPL X

(

DCNP, DCN I )

nCNp = CMPLX(DCMP?,ncNI2)
W * WN*CSORT{ DCN2)
SI * CI*(W**3) /(CPITDCN2+R.85AE-12)

C RHOP IS THE PADIAL COORDINATE OF THE DIPOLE TIMFS THE WAVE NUMBER*
PHOP « CONK*1.0E*CSOPT (DCN2)
CKPRR = REAL ( RHOP)
C K PR I a AIMAG

(

RHOP )

CALL GENPKR
0^ 36 T*1,NPANKI
PSSIPP(I) = BSSLSP(I)
CNFUMO(I) a CNCIJMN ( I

)

HANK p ( I ) = BSSLPP<X) + CI*CNFIJMP(I)
36 CONTINUE

PHO « C0NK*1.1*CS0RT(DCN2)
CKPRR = REAL(RHO)
CKPRI « ATMAG(RHO)
CALL GENBKQ
Dn 37 I =1,NPANKI
HANK(T) = BSSLSD(I) +CI+CNEUMN { I )

37 CONTINUE
CN a 0.0

C GENERATE LEGENDRE FUNCTIONS FOP DIPOLF ANGULAR COORDINATE THETAD.
TWPTA * DTP+THFTAD
CALL TR TG( THFT AD, S INTM,COSTH

)

CALL GENLGP
DO 35 N«1,NRANK
NP ® N+NPANK
CN a CN+1 .0
N1 « N+l
PI - CN*C0STH*PNMLLG(N1 )-(CN+CMV)*PNMLLG(N)
P? x cmv*PNMLLG(N1)
CKDR a RHOP
BJKN) = NtNl*BSSLPP(Nl) /CKPR
BJ2CN) x BSSIPP(N) - (N/CKPR)*BSSLPP(N1)
PX x l.o
py x o.o
P 7 x o.O
ADIX(N) * C0STH+P2 *BSSLPP (NX)
A D 1 7 ( N ) x -BSSLPP ( N1 )*SINTHtP?
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ADIX(NP) - P J1 (N)*PNMLLG( N 1 ) ( SINTH**2) 4 B J 2 ( N ) *C OSTH* PI
AD17(NP ) = B J 1 C N)*S INTH*C0STH*PNMUG(N1)-BJ?(N)*SINTH*P1
AD2Y(N) » -P1*BSSLPP(N1

)

AD 2Y ( N P ) * -P?*PJ?(N)
A 0 1 ( N! ) = (PX*AD1X(N) 4 PZ + AQ1Z (N) )*SI
AOl(MP) = (PXtADlX(NP) 4 PZ*AD1Z(NP) )*SI
A D 2 ( N )

* PY*A[)?V( N ) + S I

A D 2 ( N P ) = py*AD?Y( NP )*ST
35 CDMTTNUF

C

T HP SCATTERED P T F

1

0 COEFFICIENTS = THE TRANSITION MATRIX TIMES THE
INCinPNT FIELD COP FF ICIFNTS

.

DO 45 I = 1,NR2
SI = 0.0
S? = 0.0
DO 40 J = 1,NP2
SI = si + TMAT( I, J )*AD1< J

)

^ 2 = S 2 + TMATd, J )*AD2< J)
40 CONTINUE

FC-l(I) = SI
FG2 ( I ) * S

2

45 CONTINUE

FVALUATF THE SCATTFPFD FTFIO at EACH SCATTERING ANGLE.

DO 170 IU = 1,NIJANG
C GENERATE THF LEGENDRE MULTIPLIERS.

THFTT « DLTANG*(IU - 1)

IF (THFTT. LE. 181 .0) GO TO 6?
PHP = ph + 1«0.0
THET = 360,0 - THFTT
THETA » 0TRTTHFT
SINTH « SIN(THFTA)
COSTH a r os (TFFTA

)

CALL GFNLGP
PHI = CYV^PHP
GO TO 41

62 IF(THFTT) 05*85*95
P 5 COSTH » 1.0

KODE = 0

91 SINTH * 0.0
T H FT A « 0.0
GO TO 119

95 TF(THFTT- 180.0) 105*101*105
101 COSTH = -1.0

KODE » 180
GO TO 01

105 THETA = DTP*THETT
SINTH = SIN (THFTA

)

COSTH a COS(THETA)
119 CALL GENLGP

PHI « CMV4PH
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61 CAM TRTG(PHT,SIMPHMCOSPHT)
FNGANS<IU»1) * 0.0
FNGANS ( HU 2 ) * 0.

0

RCOMPflU) = 0.0
CN - 0.0
DH 160 N - 1,NPANK
NP * N+NPANK
N 1 = N + l

CM = CM+1.0
PI = CN*cnSTH*PNMLLG(Nl)-(CN+CMV)*PNMLLG(N)
P 2 * CMVtPNMLLG(Nl)
AA*SINPHI*P1
Pr sCHSPHT«pi
cc=stnphi*p2
DD*COSPHT *P 2

EE « PNMLLG(N1)+SINTH*C0SPHI
F F = PNMLLG(N1 ) *SI NTH*SINPHI
IF(KMV.NE.O) GO IQ A H

SGN = 1.0
IF(TMFTA) 68 ,AA»A8

46 I F f K 0 D c .F0.0) GO TQ 66

FGN * (-1.0)**N
46 PF = COSPHT+SGN

F P * SINPHI+SGN
A® CONTINUE

CALCULATE IMF THETA COMPONENT OF THE SCATTERED FIFLD.

CKPO 3 PHO
H 1 ( N ) * N*N1*HANK(N1)/CKPP
H ? ( N ) = MANK(N) - (N /CK PP ) + HANK ( N1

)

fTHFTAMDD*F01(N)-CC*FG?(N))*HANK(N1)+(PP*FG1(NP)~AA*FG?(NP))*H2(N
1)

FNGANS(IIUI) = FMGANS(TUM) + F THP T A / CM XN PM ( N )

CALCULATE THF P«I COMPONENT OP THE SCATTERED FIELD.

FPHI = -<88*FG?(N} + AA*FG1{N))*HANK(N1 ) - ( C C * FG1 { N P ) +DD* F G2 ( N P ) ) *H 2 ( N

)

FNGANMHU2) = PNGANS ( IIJ> 2) + F PH I / C MX NR M ( N )

CALCULATE the R COMPONENT OF THF SCATTERED FIELD.

pp a (EE*FG1(NP)-FF*FG2(NP))*H1(N)
PCOMP(TU) * PCOMP(TU) + FP/CMXNRM(N)

160 CONTINUE
170 CONTINUF

C ACCUMULATE THF PENULTS EOP EACH M VALUE.
DO 17? ILJP * 1,NUANG
ACANSfIUP,l) * A C A N S ( T U P , 1 ) + FNGANS ( IUP» 1)

A C A N S ( I U p * 2 ) * ACANS(TUP»2) + FNGANS ( IUP» 2

)

ACANSR(IUP) * ACANSR (IUP 1+RCOMP ( IUP

)

172 CONTINUE

40



r>

r>

o

c PRINT TMP FIELD COMPONENTS AND THEIR MODULI SQUARED.
VP TTE C 6 . 17*5 ) KMV

175 «=OPMAT( 1H1, 35X, 35H********** ACCUMULATED SUMS EOP M =,I3,11H *****
1*****/1HO,40X,17HTOTAL NEAR FIELDS/lHO, 1X,5HANGLE,12X, 15HTHETA COM
2 P ONE NT, 1 A V, 13 HD HI COMPONENT, 16X> 11 HR -COMPONENT, 2 2 X,5HT0TAL//

)

N C 0 N V > o

M CONV 0

LCONV * 0

SCANG = 0.0
CALL OT POLE(ETH,EPH,EPC)

C ADD DIPOLE FIELDS ETH, ERH, ER C TO OBTAIN TOTAL FIELDS.
DO 1Q0 JIJP = 1 , NU A NG
T«C « A C ANS { J UP, 1 ) ETH(JUP)
PMC = AC ANS ( JUP, 2 ) + EPH(JUP)
RC = ACANSR(JMP) + E R C ( J U D )

THC * THETA COMPONENT OF TOTAL FTELD.
PMC * PHI COMPONENT OF TOTAL FIFLD.
RC = R COMPONENT OF TOTAL FIELD,
y * c AP S (THC ) **?
V = CABS(PHC)**?
R * CABS(RC)**?
FSO = X+Y+R
WRITE (6,1*1) SCANG,X,Y,P,ESO

181 FORMAT (1H ,F6.2,A(1?X,F16.6) )

C tfst fop convergence at fach angle.
T F ( TEST ) GO TO 184
I F ( A o S ( X - 7V0LD( JUP ) ) .LF. (Y + l .0E-03) ) NCONV - NCONV + 1

I F ( ARS(Y - ZYOLD ( JUP ) > .1 E. ( Y*1 .0F-03 ) ) MCONV - MCONV + 1

I F ( A BS ( R - ZPHLD( JUP) ) .LE.(R*1.0F-03) ) LCONV = LCONV 1

184 ZXOLD(JUP) = X

ZYOLD(JUP) * Y

7P OLD (JUP) * R

SCANG * SCANG+DLTANG

100 CONTINUE
C TFST fop COMPLETE convergence of solution.

198 IF(NCONV.EO.NIJANG. AND. MCONV. EO.NUANG. AND. LCONV. FQ.NUANG) GO TO 194
TEST = .FALSE.

C

P FTURN
194 WP T TF ( 6, 200)
200 FORMAT( 1H0, 30H*** SOLUTION HAS CONVERGED ***)
14 CONTINUE

STOP
FND
SUBROUTINE TRIG( A, SINN,CQSN)
common dtr,rtd,cpi
SINN = S IN ( DTP* A)

COSN * COS(DTP*A)
I p (A— 180.0) 5,10,15

5 IF( A+180.0) 15,10,15
10 SINN = 0.0
15 I F ( A—90,0) 20,25,30
20 IE(A+90.0) 30,25,30
25 COSN = 0.0
30 RETURN

END
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SUBROUTINE CALENP
C CALCULATE TM(= ANGULAR FNOPOINTS FOR EACH SECTION OF THE BODY,

COMMON DTR, RTD» CP X

COMMON /ROYCOM/ DC NR, DC NT ,CKPQR,CKPR I, CKR,DCKP , CONK, AOVPB* WN, IB
COMMON /TMTCOM/ THFTA,STNTM,C0STH,CDH(6), E0PS(6).NSECT,NDPS(6)
F P R S ( 1 ) *CPI/?.0
C D H C ! ) * FPPS(1)/NDPS(1)
RETURN
END
subroutine gpnkr

C CALCULATE CKP and DCKP as a function OF thfta FOP A PROLATE sphfroid.
COMMON / BDY COM / DCNP, DCNI,CKPRR,CKPPI, CKP, DCKR, CONK, AOVPBjWN, IB
COMMON / THT COM / TH E T A , S

I

NT H

,

C OS T H

,

C DH ( 6 )

,

E P P $ ( 6 ) * NS EC T

,

ND PS ( 6

)

0 R = l.0/S0RT(CCSTH**2+(A0VRB*$INTH)**2>
C K R 2 rnNK«QR
0 C K R = -CONK*CnSTH*SINTH* ( AO VR R ** 2- 1 . 0 ) * C R**3
P t Ti l R N

END
SUBROUTINE DIROLE(ETH,FPH,ERC)
A SUBROUTINE TO CALCULATE THE FIELD DUE TO A DIPOLE AT COORDINATE
(DD,THD,0.0) AND COMRONFNTS (PX,py,P7)
FTH = THFTA component OF ELECTRIC F I F ID AT ORS F RV FR COORDINATE (PO
, SCANG, PH/PHP )

,

F PH * PHI COMPONENT
E P C = R-COMPONENT
W = WAVE NUMBER IN OBSERVERS MEDIUM,
D 3 DISTANCE RFTWFFN DIPOLF AND OBSERVER,
COMPLEX i|,V,W,CI,Py,PY,P7,FTH(361),EPH(361),ERC(361),DCN2,FAC,CE>

1 A C A N S , A C A N S P

COMMON DTR,RTD,CPI
COMMON / BD.Y CO M / DC NR , DC N I , CK P R P, CK P R I , CK R , DC KR , CONK , AO VP B , WN, I B

COMMON /THTCOM/ THETA, SINTH, COSTH,CDH( 6) , EPPS( 6 )> NSECT, NDPS ( 6)

1 ,THETAD» PH, KS FCT
C0MM0N/UVCCOM/ACANS( 3 61* ? ) , A C AN S P ( 36 1 ) » DLT ANG , DCN R 2, DCN 1 2, NU ANG
THD 3 THFT ADADTP
CT S o•H•vOoo

PX 3 1 .

0

pv S 0.0
p 7 3 0. 0

PD 3 1 . 05*C0NK / WN
p 0 s 1 . 1*C0NM / WN

DO 11 I = 1 » NUANG
SCANG * (T-D + DLTAMG
IE (SCANG. LE.1B1.0) GO TO 8

SCAN = 360 . O-S C ANG
THETA « SCAN*DTR
S I NTH * EJN (THFTA

)

COSTH = COS(THFTA)
P H P - 180.0+PH
PHO 3 PHO+OTP
GO Tn q
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B THETA * SCANG*OTR
STNTH * SIN(THETA)
CnSTH * CHS (THETA)
P H P * PH*DTP

q pY = pp*C TNTH*CPS ( PHP)-Rn*STN ( THO)
RY = RO*SINTH*S IN( PHC)
R 7 = RO*CD$TH - P 0 *CO S ( THO

)

p = SQPT (QX**2+RY**?+P7**2)
PT=PX*C!NTH*CPS(PHO)+RY*STNTH*$IN(PHO)+R7*COSTH
P?apy*C n ETHtCPS( PHO)«-RY*CHSTH*SIN ( PHO ) -P 7 *S I NTH
P3*PY*rOMPHn)-PX*SIN(pHn)
D0N2 = CMPL X (D^NR2,DCNT?)
y » WM*C$ORT( OCN2)
U * (W**?)/D + CI*W/0**2 - 1 / 0** 3

V * 3.0*(l/0**5 - CI*W/0**4) - ( W**2 ) /0**3
FAC = 1/ (4.0*f PT*DCN2*P.P5*E-12)
r E = CE XP ( c T*W*D

)

FTH(T) = FAC* ( °Y* ( U*CnSTH*COS (PHP)+V*RX*R2)+PY* (U*COSTH*S IN ( PHO)
1+V*PY*P?)+P7*( V*RZ*P?-U*SINTH) ) *CE
FPH(I ) = E A C* ( PX* ( V* R X* P 3-U* S IN ( P HO ) ) + P Y* ( U*CO S ( PHO ) +V*R Y*R3 ) + PZ

*

1V*R7*R3)*CE
EPC(T) = FAC*( PX*(U*SINTH*CaS (°HO ) +V* RX* R 1 ) +PY * (U *$ INTH*$IN< PHO)

IV* PY* PI ) + P7*(U*COETH + V*PZ*Pl) )*CE
11 CONTINUE

RETURN
FNP
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